Processing math: 2%

May 4, 2016

Shiny R code for multiple plots using ggplot2 and gridextra

Shiny R code for multiple plots using ggplot2 and gridextra

Sample code to use shiny for multiple graphs in same plot
Use ggplot2 and gridextra



Jan 7, 2016

Model free implied volatility

Risk-Neutral Skewness and Kurtosis:

See this post for R code to calculate model free implied volatility.

Let stock price return for period \tau is given by:

\begin{equation} R(t,\tau) \equiv ln[S(t, \tau)]-ln[S(t)] \end{equation}

\begin{equation} H[S]\left\{\begin{matrix} V(t,\tau) \equiv R(t, \tau)^{2}    \text{              Volatility contract }  & \\W(t,\tau) \equiv R(t, \tau)^{3} \text{            Cubic contract }  & \\ X(t,\tau) \equiv R(t, \tau)^{4}\text{       Quadrartic contract }  & \end{matrix}\right. \end{equation}

The price of the volatility contract:
\begin{equation} V(t,\tau)=\int_{S(t)}^{\infty }\frac{2(1-ln(K/S(t)))}{K^{2}}C(t,\tau;K)dK+\int_{0}^{S(t)}\frac{2(1-ln(K/S(t)))}{K^{2}}P(t,\tau;K)dK \label{ref1} \end{equation}

The price of the cubic contract:
\begin{equation} W(t,\tau)=\int_{S(t)}^{\infty }\frac{6ln[\frac{K}{S(t)}]-3([\frac{K}{S(t)}])^2}{K^{2}}C(t,\tau;K)dK+\int_{0}^{S(t)}\frac{6ln[\frac{K}{S(t)}]+3([\frac{K}{S(t)}])^2}{K^{2}}P(t,\tau;K)dK \label{ref2} \end{equation}

The price of the quadratic contract:
\begin{equation} X(t,\tau)=\int_{S(t)}^{\infty }\frac{12(ln[\frac{K}{S(t)}])^2-4([\frac{K}{S(t)}])^3}{K^{2}}C(t,\tau;K)dK+\int_{0}^{S(t)}\frac{12(ln[\frac{K}{S(t)}])^2-4([\frac{K}{S(t)}])^3}{K^{2}}P(t,\tau;K)dK \label{ref3} \end{equation}

Define \mu(t, \tau):
\begin{equation} \mu(t,\tau) = e^{r\tau}-1-\frac{e^{r\tau}}{2}V(t,\tau)-\frac{e^{r\tau}}{6}W(t,\tau)-\frac{e^{r\tau}}{24}X(t,\tau) \end{equation}

For \tau-period model-free implied volatility (*MFIV*) is:
\begin{equation} MFIV(t, \tau) = (V(t, \tau))^{1/2} \end{equation}


For \tau-period model free implied skewness(*MFIS*) is:
\begin{equation} MFIS(t, \tau) = \frac{e^{r\tau}W(t,\tau)-3\mu(t,\tau)e^{r\tau}V(t,\tau)+2(\mu(t,\tau))^3}{(e^{r\tau}V(t,\tau)-(\mu(t,tau))^2)^{3/2}} \end{equation}

To calculate  the integral in equation (\ref{ref1}), (\ref{ref2}), and (\ref{ref3}), I require continuous option prices from 0 to \infty. For simplicity, I set lower limit and upper limit for integrals.

In the calculation, I use lower limit of strike price K_{L} as the minimum strike price for OTM put option with non zero contract size (or trade quantity).

For upper limit for strike price, K_{U}, I use the maximum strike price of OTM call option with non zero trading size.

References:
Bakshi, G., Kapadia, N., & Madan, D. (2003). Stock return characteristics, skew laws, and the differential pricing of individual equity options. Review of Financial Studies, 16(1), 101-143.

Jiang, George J., and Yisong S. Tian. "The model-free implied volatility and its information content." Review of Financial Studies 18.4 (2005): 1305-1342

Jan 1, 2016

Volatility smile

Following code downloads option price data for a day d from NSE website and plot volatility smile  :)
library(data.table)
library(RQuantLib)
#### For OS x libcurl may not work###
# This code work without quantmode#
NSEIndex = "^NSEI"
# Risk free interest rate fixed at 7.5%
# Source NSE Mibor
riskfree = 0.075
#Specify date in mm/dd/yyyy
dates = c("01/06/2015")
tdata <- as.Date(dates, format = "%m/%d/%Y")
# Find URL link at NSE website for the bhavcopy of the day
urllink = paste("http://www.nseindia.com/content/historical/DERIVATIVES/",(format(tdata, "%Y")),"/",toupper(format(tdata, "%b")),"/fo",toupper(format(tdata, "%d%b%Y")),"bhav.csv.zip", sep="")
tempzip = paste(toupper(format(tdata, "%d%b%Y")),"bhav.csv.zip", sep="")
tempfilename = paste("fo",toupper(format(tdata, "%d%b%Y")), "bhav.csv", sep="")
# download the compressed file and extract
download.file(urllink,tempzip, mode="wb" , method = "libcurl")
unzip(tempzip, tempfilename, overwrite = T)
optiondf <- read.table(tempfilename, sep=",", header=T)
print("Downloaded derivative market data for the day")
print(head(optiondf))
# Download or read indices' close price
indexlnk = paste("http://www.nseindia.com/content/indices/ind_close_all_", toupper(format(tdata, "%d%m%Y")),".csv", sep="")
tempindexzip = paste(toupper(format(tdata, "%d%m%Y")),"index.csv", sep="")
download.file(indexlnk,tempindexzip, mode="wb" , method = "libcurl")
indexdf <- read.table(tempindexzip, sep=",", header=T)
print("Downloaded market index data for the day")
print(head(indexdf))
# get NIFTY 50 Index price
indprice = 0
# Dataframe for put/call options
optionindxdf = NULL
otmput = NULL
otmcall =NULL
# find NIFTY index price
if(length(indexdf)>0) {
colmhead = "Nifty 50"
if(colmhead %in% indexdf[, 1]){
indprice = indexdf[indexdf$Index.Name =="Nifty 50","Closing.Index.Value"]
}
else{
indprice = indexdf[indexdf$Index.Name =="CNX Nifty","Closing.Index.Value"]
}
}
if(length(indexdf)>0) {
# Near expirty date
optiondfEDT = as.Date(optiondfEXPIRY_DT, "%d-%b-%Y")
# Days to maturity
optiondfdtm = as.numeric(optiondfEDT - tdata)
nearexp = min(optiondf[(optiondfdtm>20) & (optiondfdtm<100), "EDT"])
optselindx = (optiondfINSTRUMENT=="OPTIDX") & (optiondfSYMBOL=="NIFTY") & (optiondfCONTRACTS>0) & (optiondfEDT==nearexp)
optionindxdf = data.table(optiondf[optselindx, ])
# Out of money call and put options
otmput = optionindxdf[(optionindxdfOPTION_TYP=="PE") & (optionindxdfSTRIKE_PR<indprice), ][order(STRIKE_PR)]
otmcall = optionindxdf[(optionindxdfOPTION_TYP=="CE") & (optionindxdfSTRIKE_PR>indprice), ][order(STRIKE_PR)]
otmput$X = NULL
otmcall$X = NULL
print("Call option details:")
print(head(otmcall))
print("Put option details:")
print(head(otmput))
# Calculate implied volatility
idx = seq(1, dim(otmput)[1])
otmput$IV = 0.01
for(j in idx){
oval = otmput[j, CLOSE]
stk = otmput[j, STRIKE_PR]
# Annualized days
matrty = otmput[j, dtm]/360.0
dvdyld = 0
expvol = 0.1
civ = EuropeanOptionImpliedVolatility(type="put", value=oval, underlying=indprice, strike=stk, dividendYield=dvdyld, riskFreeRate=riskfree, maturity=matrty, volatility=expvol)
otmput$IV[j] = civ
}
idx = seq(1, dim(otmcall)[1])
otmcall$IV = 0.01
for(j in idx){
oval = otmcall[j, CLOSE]
stk = otmcall[j, STRIKE_PR]
matrty = otmcall[j, dtm]/360.0
dvdyld = 0
expvol = 0.
civ = EuropeanOptionImpliedVolatility(type="call", value=oval, underlying=indprice, strike=stk, dividendYield=dvdyld, riskFreeRate=riskfree, maturity=matrty, volatility=expvol)
otmcall$IV[j] = civ
}
# Plot the volatility smile/smirk
smirkval = c(otmputIV, otmcallIV)
smirkstk = c(otmputSTRIKE_PR, otmcallSTRIKE_PR)
plot(smirkstk, smirkval, xlab="Strike", ylab= "Implied volatility", main ="Volatility smile", type="l", col = "dark red")
abline(v=indprice, col="blue")
text(indprice, 0.2, "Stock Price")
}



Dec 31, 2015

R code to download Options and Futures data from NSE

The code below can download daily bhav for Futures and Options from the NSE website

I have also include sample code that downloads indices level from the National Stock Exchange

#### For OS x libcurl may not work###
# This code work without quantmode#
NSEIndex = "^NSEI"
# Risk free interest rate fixed at 7.5%
# Source NSE Mibor
riskfree = 0.075
#Specify date
dates = c("12/28/2015")
tdata <- as.Date(dates, format = "%m/%d/%Y")
# Find URL link at NSE website for the bhavcopy of the day
urllink = paste("http://www.nseindia.com/content/historical/DERIVATIVES/",(format(tdata, "%Y")),"/",toupper(format(tdata, "%b")),"/fo",toupper(format(tdata, "%d%b%Y")),"bhav.csv.zip", sep="")
tempzip = paste(toupper(format(tdata, "%d%b%Y")),"bhav.csv.zip", sep="")
tempfilename = paste("fo",toupper(format(tdata, "%d%b%Y")), "bhav.csv", sep="")
# download the compressed file and extract
download.file(urllink,tempzip, mode="wb" , method = "libcurl")
unzip(tempzip, tempfilename, overwrite = T)
optiondf <- read.table(tempfilename, sep=",", header=T)
print("Downloaded derivative market data for the day")
print(head(optiondf))
# Download or read indices' close price
indexlnk = paste("http://www.nseindia.com/content/indices/ind_close_all_", toupper(format(tdata, "%d%m%Y")),".csv", sep="")
tempindexzip = paste(toupper(format(tdata, "%d%m%Y")),"index.csv", sep="")
download.file(indexlnk,tempindexzip, mode="wb" , method = "libcurl")
indexdf <- read.table(tempindexzip, sep=",", header=T)
print("Downloaded market index data for the day")
print(head(indexdf))
view raw NSEData.R hosted with ❤ by GitHub

Sep 3, 2015

Factor to explain factor

The new fama-french model replaces the existing five-factor model.  The new five-factor fama-french model includes  profitability and investment factors.
Profitability factor: Robust minus weak operating profit (RWA )= (SR + BR) / 2 – (SW + BW) / 2 = [(SR – SW) + ( BR - BW)] / 2 

Investment factor:  Conservative minus aggressive Investment (CMA)  = (SC + BC) / 2 – (SA + BA) / 2 = [(SC – SA) + ( BC -BA)] / 2

S = small ; B = big; R = Robust; W= Weak; C= Conservative; A = Aggressive 

The new model is:

R_{t}-RF_{t} = \alpha + \beta_{1}[RM_{t}-RF_{t}] + \beta_{2}SMB_{t}  + \beta_{3}HML_{t}  + \beta_{4}RMW_{t}  + \beta_{5}CMA_{t}  + \epsilon_{t}

RM_{t}-RF_{t} = excess market return
SMB_{t} = the Size factor
HML_{t} = the value factor
RMW_{t} = the profitability factor
CMA_{t} = the investment factor
RF_{t} = risk free rate